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Abstract: Fluxes are widely used to stabilise extra dimensions, but the supporting

monopole-like configurations are often unstable, particularly if they arise as gauge flux

within a non-abelian gauge sector. We here seek the endpoint geometries to which this

instability leads, focussing on the simplest concrete examples: sphere-monopole compacti-

fications in six dimensions. Without gravity most monopoles in non-abelian gauge groups

are unstable, decaying into the unique stable monopole in the same topological class. We

show that the same is true in Einstein-YM systems, with the new twist that the decay leads

to a shrinkage in the size of the extra dimensions and curves the non-compact directions:

in D dimensions a MinkD−2 × S2 geometry supported by an unstable monopole relaxes

to AdSD−2 × S2, with the endpoint sphere smaller than the initial one. For supergravity

the situation is more complicated because the dilaton obstructs such a simple evolution.

The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime

symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and

examine several candidates for the endpoint geometry. By using the trick of dimensional

oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-

YM monopole, allowing understanding of this system to guide us to the corresponding

endpoint. The result is a Kasner-like geometry conformal to Mink4 × S2, with nontrivial

conformal factor and dilaton breaking the maximal 4D symmetry and generating a singu-

larity. Yet the resulting configuration has a lower potential energy than did the initial one,

and is perturbatively stable, making it a sensible candidate endpoint for the evolution.
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1 Introduction

The ubiquity of moduli in extra-dimensional compactifications has been a persistent thorn

in the side of model-builders attempting to bring higher-dimensional theories into contact

with Nature as we see it around us. For this reason flux-supported compactifications,

for which various n-form field strengths thread cycles and are topologically blocked from

relaxing to zero, represent a significant step forward by providing an attractive mechanism

that dynamically stabilises many of these moduli.

Better yet, the required n-form fields are as common as dirt in supersymmetric theories,

arising as components of the gravity supermultiplet in higher dimensions; as Maxwell fields

required by anomaly cancellation; or as fields sourced by D-branes or other such objects.

Perhaps the simplest such construction, due to Salam and Sezgin [1], is more than 20

years old, and threads a Maxwell flux through the extra dimensions in 6D supergravity to

stabilise its compactification to Mink4 × S2.

What is less well known is that a great many of such monopole configurations are

unstable, particularly when the flux involved arises as a Dirac monopole embedded into a

non-Abelian gauge sector. For instance, explicit calculations [2] show that sphere-monopole
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compactifications in anomaly-free supergravity — and their warped braneworld generaliza-

tions — are generically unstable, even though the monopole in question carries nontrivial

topological charge. The instability is possible because there are typically more monopole

solutions than there are distinct topological sectors, allowing most to decay to the (of-

ten unique) stable representative in any topological class — a phenomenon that is well

understood within pure Yang Mills (YM) theories [3–5].

For monopole-supported systems, the coupling to gravity does not remove the insta-

bility [6, 7], and requires the geometry also to relax as the monopole decays. We examine

this relaxation here, and argue that it is fairly straightforward for the Einstein-YM system

(EYM). As in pure YM theory, the unstable monopole evolves towards the unique stable

monopole in the same topological class [5], and as it does so the geometry adjusts simply

by shrinking the size of the supported extra-dimensional sphere, and by curving the large

4 dimensions. In d + 2 dimensions, starting from Minkd × S2 the system evolves towards

AdSd × S′
2, with the radius of S′

2 being smaller than that of S2.

The situation is more complicated in the supergravity case, because the dilaton ob-

structs this same simple evolution towards another maximally symmetric solution built

with the stable monopole because for it σ 6= 0. As a result ∂Mσ 6= 0, instead leading to a

breakdown of some of the spacetime symmetries. The corresponding final state for higher

dimensional systems, with gravity and a dilaton back-reacting to the monopole dynamics,

is unknown.

In this paper we examine several candidate stable endpoint configurations for the sim-

plest case of compactifications of 6D supergravity down to 4D. We argue that the insensi-

tivity of the low-energy effective 4D scalar potential to scalar gradients in the compactified

two dimensions make it likely that it is the 4D spacetime symmetries that break in this

case, rather than those of the compactified two dimensions.

To find the endpoint solution we employ a trick: a cycle of dimensional oxidation and

reduction that maps the solutions of the supergravity of interest onto those of a dilaton-

free pure EYM system in still-higher dimensions. We use this to map the unstable initial

monopole-supported supergravity configuration onto an unstable monopole-supported state

in the still-higher dimensional theory. Assuming this higher-dimensional EYM system

relaxes in the simple maximally-symmetric way tells us its endpoint, and this can then be

mapped to determine the endpoint EYM-dilaton configuration that is supported by the

final stable state into which the monopole decays.

Proceeding in this way we are led to a stable, nonsupersymmetric endpoint geometry

that (in the absence of brane sources) is conformal to Mink4 ×S2. Its nontrivial conformal

factor and dilaton break the maximal 4D symmetry, giving rise to a singular geometry

for which the dilaton and curvature blow up at a point in the 4D spacetime. However,

the configuration nonetheless has a lower potential energy than did the initial one, and is

stable, and is a reasonable candidate for the endpoint of the instability.

Although the dilaton changes the dynamics drastically, the presence of branes (specif-

ically, conical singularities in the extra-dimensional geometry) and warping do not make

much difference, as we show by also finding a warped generalization of the endpoint solu-

tion in this case, for generic brane tensions. The solutions we find in this way turn out to
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be static analogues of the time-dependent scaling solutions to 6D supergravity found in [8],

with the fields varying along a 4D spatial coordinate rather than along time.

We also examine a class of supersymmetric solutions to 6D supergravity as candidate

endpoints (that also break the 4D spacetime symmetry) [9]. Although we cannot prove

these not to be the ultimate endpoint, we provide arguments as to why this seems less

likely than those we construct using the oxidation/reduction trick.

The rest of our exposition is organised as follows. The next section, §1, summarises

the field equations of chiral gauged 6D supergravity [13], together with their most general

monopole-supported solutions that have at most conical singularities [14, 15]. This section

concludes by briefly summarising the linearised stability analysis of ref. [2], and review-

ing the topological classification of non-abelian Dirac monopoles in YM theories. §3 then

describes how gravity backreacts to monopole decay in dilaton-free EYM theory, by shrink-

ing the extra dimensions and curving the 4 large dimensions. Finally §4 generalises these

considerations to the EYM-dilaton system that arises in the 6D supergravity of interest.

This section describes the oxidation/reduction procedure, and applies it to two examples.

The first example considers unwarped systems such as arise in the absence of branes, or

with two branes having equal tension. The second does the case of the general warped

geometries of §2, having only conical singularities. We end with some brief conclusions.

2 Theory and background

We start with the bosonic action1 for chiral 6D gauged supergravity coupled to gauge- and

hyper-multiplet matter, with gauge group Ĝ = G × U(1)R [13]

SB =

∫

d6x
√−g

[

1

κ2
R− 1

4
∂Mσ ∂

Mσ − 1

4
eκσ/2 Tr (FMNF

MN) (2.1)

− 1

12
eκσHMNPH

MNP −Gαβ(Φ)DMΦαDMΦβ − 8

κ4
e−κσ/2v(Φ)

]

,

where {gMN ,H3 = dB2 + A1 ∧ F2, σ} are the bosonic fields in the gravity multiplet; FMN

are the gauge-multiplet field strengths for G × U(1)R; and Φα denote the hyper-multiplet

scalars. The dependence of the scalar potential on Φα is such that its minimum is at Φα = 0

where v(0) = g2
1 , and so we fix henceforth Φα = 0. Here g1 is the U(1)R gauge coupling,

and we use g for the G coupling constants.2

Using Φα = 0 the remaining equations of motion (EOMs) become

1

κ2
RMN =

1

4
∂Mσ ∂Nσ +

1

2
eκσ/2 Tr (FMPF

P

N ) +
1

4
eκσHMPQH

PQ

N − 1

4κ
gMN σ,

1

κ
σ =

1

4
eκσ/2 Tr (FMNF

MM) +
1

6
eκσHMNPH

MNP − 8g2
1

κ4
e−κσ/2,

DM

(

eκσ/2FMN

)

=
κ

2
eκσHNPQFPQ,

DM (eκσHMNP ) = 0, (2.2)

1For fermionic terms see [13].
2In general, if G consists of several simple factors, g represents a collection of independent gauge cou-

plings.
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where

AM = AI

M
TI , FMN = F I

MN
TI

F I

MN
= ∂MA

I

N
− ∂NA

I

M
+ g cI

JKA
J

M
AK

N

DM = ∇M − igAI

M
TI (2.3)

with ∇M the Lorentz covariant derivative, and TI are the gauge group generators with

structure constants cI
JK .

2.1 Background solutions

The solutions to these equations whose stability is of interest are monopole-supported extra

dimensions, in which the extra dimensions are supported against gravitational collapse by

having a gauge flux thread the extra dimensions. Our interest in particular lies in the case

where this background flux lies within the non-Abelian part of the gauge group. A broad

class of these have the form [15],

ds2 = gMN dxMdxN = ρ ηµν dxµdxν +
dρ2

h(ρ)
+ h(ρ) dφ2

A± =
qaQa

2

(

1

ρ2
− 1

ρ2
±

)

dφ

κσ = 2 ln ρ , HMNP = 0 (2.4)

with

h(ρ) =
2M

ρ
− 2 g2

1ρ

κ2
− κ2 γabq

aqb

8 ρ3

= − 2 g2
1

κ2ρ3

(

ρ2 − ρ2
+

) (

ρ2 − ρ2
−
)

, (2.5)

where Qa are the generators of the Cartan subalgebra of the Lie algebra associated with

the group G, normalized so that Tr(QaQb) = γab = γ2δab, for constant γ. The qa identify

the magnitude and direction of the background flux in the Lie algebra of G. Finally,

ρ− < ρ < ρ+, where

ρ± =
κ2

2g2
1

[

M ±
√

M2 − 1

4
γabqaqb

]

, (2.6)

denote the two positive values where h(ρ±) = 0, at which point the geometry has a conical

singularity, with deficit angle

δ± = 1 − 1

2

∣

∣h′(ρ±)
∣

∣ = 1 − 2 g2
1

κ2ρ±

(

ρ2
+ − ρ2

−
)

. (2.7)

As shown in ref. [16], it is the property that these singularities are conical that defines these

solutions, eqs. (2.4) and (2.5), as special cases of the more general solutions of ref. [14].

We regard the conical singularities as indicating the presence of source codimension-two

branes having tensions T±,

Sbrane = −T±
∫

d4y
√−γ± , (2.8)
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with yi being coordinates on the brane world-volume, and γij the induced metric there.

The tension is related to the geometry’s conical defect angle through T± = 2δ±/κ2, and

this connection allows us to trade the integration parameters M and q2 = γabq
aqb for the

two source brane tensions. It turns out that only one combination of these parameters is

fixed, and that the tensions of the branes are related to each other by a constraint [15] (see

later sections for a recap of some of these features).

These solutions break supersymmetry, apart from the special rugby-ball case where the

dilaton is a constant: ∂mσ = 0. Whether supersymmetry breaks even in this case depends

on the boundary conditions at the branes [17], which is governed by more model-dependent

details of the branes themselves.

The amplitude, qa, of the gauge field is also constrained by topology to be quantized,

as follows. In order for the gauge field potential to be well-defined at ρ±, we need to

cover the internal manifold with two coordinate patches. Requiring that the two patches

be related by a single valued gauge transformation on their overlap leads to the following

Dirac quantization condition

− g eaI

qa

2

(

1

ρ2
+

− 1

ρ2
−

)

= NI , (2.9)

where NI are integer monopole numbers, one for each gauge generator TI . The quantities

eaI denote the Qa charge of generator TI , defined in the adjoint representation by choosing

a basis of generators that satisfies [Qa, TI ] = eaITI (no sum). This clearly vanishes for

all generators of the Cartan subalgebra, eab = −eba = 0. For those Ti not in the Cartan

subalgebra3 hermitian conjugation reverses the sign of this charge, so we choose notation

so that T †
i = T−i.

Rugby balls and spheres. Ref. [16] shows that these solutions go over to the unwarped

rugby-ball solutions [18], when T− → T+ (and to the spherical Salam-Sezgin solutions [1]

when T+ = T− = 0). In these limits, a change of coordinates puts the background into the

familiar form of a spherical geometry supported by a Dirac monopole:

ds2 = ηµνdx
µdxν + a2

(

dθ2 + sin2 θdφ2
)

A± = −q
aQa
2

(cos θ ∓ 1) dφ

κσ = HMNP = 0 (2.10)

In this case the equations of motion fix the radius of the sphere,4 a = κ/(2
√

2g1), and fix

the monopole strength

q2 = γ2δab q
aqb =

1

g2
1

. (2.11)

(Any other value for the monopole strength would induce warping in the non-compact

directions, which requires T+ 6= T−). On the other hand, the Dirac quantization condition

in this case reduces to:

− g qa eaI = NI , (2.12)

3In the Cartan-Weyl basis of generators we label the Lie algebra of G by: {TI} = {Qa, Ti, T−i}.
4More generally there is a flat direction along which the values of σ and a are correlated.
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T1 T2 T3

Q1
1√
3

1
2
√

3
− 1

2
√

3

Q2 0 1
2

1
2

Table 1. Table of charges for adjoint fields in SU(3).

and so consistency between this and eq. (2.11) in general requires relations between the

otherwise independent couplings g1 and g. In the simplest case where the monopole is

aligned in the U(1)R direction [1] we have g = g1 and consistency between equations of

motion and Dirac quantisation imply the monopole number must be N = ±1.

A concrete example

It is useful in what follows to have in mind a concrete example that is simple enough to

solve explicitly yet complicated enough to display the instabilities of later interest. For

this purpose we focus on the subsector of the theory for which the gauge fields lie within a

subgroup Ĝ = SU(3) × U(1)R of the full group, with all hyper-scalars either neutral under

the non-Abelian subgroup or transforming in the adjoint,5 and all other fields required for

anomaly cancellation, including the Kalb-Ramond fields HMNP , set to zero.

The Cartan subalgebra of SU(3) is two-dimensional, Qa with a = 1, 2, and with the

normalisation condition γab = Tr (QaQb) = 1
6 δab (so γ2 = 1

6), these may be written

Q1 =
1

2
√

3







1

−1

0






Q2 =

1

6







1

1

−2






. (2.13)

The remaining six generators can be divided into three pairs, Ti and T−i with i = 1, 2, 3,

having opposite charges. The independent nonzero charge eigenvalues, eai, are listed in

table 1.

The monopole breaks the SU(3) gauge group down to either U(1)1 ×U(1)2 or SU(2)×
U(1)2, depending on whether or not all of the eigenvalues of qaQa are distinct or if two of

them are equal.

The case SU(3) → SU(2) × U(1)2. If two eigenvalues of qaQa are equal then an

SU(3) rotation can be performed to ensure that qaQa points purely in the q2 direction.6

The spectrum of SU(3) gauge bosons then decomposes into the four massless gauge fields

of the unbroken gauge group together with an SU(2) doublet of massive charged states,

having charge 1
2 with respect to U(1)2 (and their conjugates). The Dirac quantisation

condition then requires that q2 = 2N/g where N = Ni=2 = Ni=3 is an arbitrary integer,

while Na = Ni=1 = 0.

5Although the hyper-scalars vanish in the background, the charge of their fluctuations plays a role in

the Dirac quantization conditions.
6The same can sometimes also be done if its eigenvalues all differ, but the required SU(3) transformation

is then singular, a distinction that turns out not to be important for identifying which monopoles are

topologically stable [4].
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The case SU(3) → U(1)1×U(1)2. Alternatively, if all eigenvalues of qaQa are distinct

then both q1 and q2 are nonzero. The SU(3) gauge fields then decompose into two massless

gauge fields, together with three complex massive vectors with U(1)1 × U(1)2 charges as

given by table 1:
(

1√
3
, 0
)

,
(

1
2
√

3
, 1

2

)

,
(

− 1
2
√

3
, 1

2

)

. The Dirac quantisation condition then

requires that q1 = 2
√

3 s1/g and q2 = 2 s2/g, where s1 = 1
2 (Ni=3 −Ni=2) = 1

2Ni=1 and

s2 = 1
2 (Ni=3 +Ni=2) are half-integer valued.

Different quantum numbers
(

s1, s2
)

do not always label distinct monopoles. For in-

stance if
(

s1, s2
)

=
(

1
2 ,

1
2

)

, then

g qaQa =
√

3Q1 +Q2 =
1

3







2

−1

−1






, (2.14)

and so equals −2Q2 up to a permutation of the axes. This shows that the (s1, s2) =
(

1
2 ,

1
2

)

monopole is physically equivalent to the (s1, s2) = (0,−1) (or N = −1) SU(2) × U(1)2-

preserving monopole.

2.2 Linearised instability

Linearised stability analysis shows that spacetimes stabilised by monopoles embedded into

non-abelian groups (as above) are unstable, as we now summarise following ref. [2]. Con-

sider therefore linearising about the background geometry

ḡMNdxMdxN := eĀηµνdx
µdxν + eĀdu2 + eB̄dφ2 , (2.15)

where the extra-dimensional coordinates are {xm} = {u(ρ), φ}. Denote the Ricci tensor for

this geometry by RMN , and the background gauge field by AM , with field strength FMN .

The unstable tachyonic directions turn out to be among the Kaluza-Klein (KK) modes

of the non-abelian gauge field that live in the extra dimensions and lie along directions

of the gauge algebra that are charged under the generator along which the background

monopole points:

δAI

uTI := V I

uTI = Vu

δAI

φTI := V I

φTI = Vφ . (2.16)

Raising and lowering all indices with the rescaled background metric, ĝMN = eκσ/2 gMN ,

ref. [2] shows that the part of the action that is bilinear in these unstable gauge-field

fluctuations is (in light-cone gauge):

S2(V, V ) = −1

2

∫

d6X
√

−ĝ Tr
[

∂µVm∂
µV m +DmVnD

mV n − 2(∂uÂ)2V 2
u

−2(∂uÂ)VuDmV
m + R̂mnV

mV n + 2gFmnV m × V n
]

, (2.17)

where Â = Ā+ κσ/2, and the covariant derivative of VM is defined by

DMVN = ∇MVN − ig [AM , VN ] , (2.18)

– 7 –
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and ∇M is the Lorentz covariant derivative.

Solving the linearised equations of motion and boundary conditions obtained from this

action, and requiring the resulting modes to have finite kinetic energy, leads to a discrete

spectrum of fluctuations. Taking advantage of the axial-symmetry, make the Fourier de-

composition:

Vn(X) =
∑

m

Vnm(x, u)eimφ (2.19)

with m an arbitrary integer, −∞ < m <∞. To diagonalise the mode functions make the

field redefinitions

V±m(x, u) =
1√
2

(

e(Â+B̂)/4 Vum(x, u) ± ie(3Â−B̂)/4 Vφm(x, u)
)

(2.20)

and perform a Kaluza-Klein decomposition

V±(x, u) = V±(x)ψ±(u) . (2.21)

The solutions for ψ±(ρ) can then be found explicitly in terms of hypergeometric func-

tions. For n = 0, 1, 2, . . . the corresponding KK mass spectrum for V I
+ is

• For m ≤ − 1
η+

and m ≤ NI + 1
η−

M2 =
1

a2

{

n(n + 1) −
(

n +
1

2

)

[mη+ + (m −NI)η−] + m(m−NI)η+η−

}

. (2.22)

• For − 1
η+

< m ≤ NI + 1
η−

M2 =
1

a2

{

(

n +
3

2

)2

− 1

4
+

(

n +
3

2

)

[mη+ − (m −NI)η−]

}

. (2.23)

• For NI + 1
η−

< m ≤ − 1
η+

M2 =
1

a2

{

n(n− 1) −
(

n− 1

2

)

[mη+ − (m −NI)η−]

}

. (2.24)

• For m > − 1
η+

and m > NI + 1
η−

M2 =
1

a2

{

n(n + 1) +

(

n +
1

2

)

[mη+ + (m −NI)η−] + m(m−NI)η+η−

}

. (2.25)

In these expressions the parameters, η±, are related to the two conical defect angles, δ±,

by η± = (1 − δ±/2π)−1. The spectrum for V I
− is obtained from the above by transform-

ing m → −m and NI → −NI . The integer NI is the quantity appearing in the Dirac

quantisation condition, eq. (2.9).7

7In the sphere limit, the spectrum can be put into the familiar form M2 = 1

a2

»

l(l + 1) −
“

NI

2

”2
–

with

multiplicity 2l + 1, where, for V I

±, l = k + |1 ± NI/2|, and k = 0, 1, 2, . . . .

– 8 –
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Using these expressions it is possible to show that the necessary and sufficient condition

for the absence of tachyonic modes, assuming brane tensions not less than zero, is

|NI | ≤ 1 for every I. (2.26)

For fields with NI ≥ 2 the tachyonic modes are those with m = 1, 2, . . . , NI − 1, while for

fields NI ≤ −2 the tachyonic modes are those with m = −1,−2, . . . , NI + 1. Notice that

because m 6= 0 the instability towards growth of these modes spontaneously breaks the

axially symmetry of the background.

In fact, it has long been known that non-abelian monopoles in pure gauge theory in

4 dimensions are also generically unstable, with only one dynamically stable monopole

existing within each topological class [3, 5]. Similar instabilities were also found soon after

in higher dimensions, compactified on spheres, both for Yang-Mills and for Einstein-Yang-

Mills theories [6, 7]. We use these related instabilities in subsequent sections to try to

identify the new state towards which the system evolves once the instability develops.

The SU(3) × U(1)R example

It is instructive to apply this to the specific example considered above, where the monopole

is embedded into SU(3) × U(1)R.

The case SU(3) → SU(2) × U(1)1. In this case we had (q1, q2) = (2/g)(0, N), with

Na = Ni=1 = 0 and Ni=2 = Ni=3 = N . In this case we find no tachyonic modes when

N = 0,±1, but instability when |N | ≥ 2 (for which there are two complex tachyonic modes,

V i=2 and V i=3).

The case SU(3) → U(1)1 × U(1)2. Consider the monopole with (s1, s2) = (1, 0), for

example, where solving for the NI ’s leads to the nonzero values Ni = (2, 1,−1). Since

Ni=1 = 2 this monopole has one complex unstable tachyonic direction. Similarly, the

monopole with (s1, s2) = (2, 0) has tachyons amongst all three of its charged fluctuations,

since Ni = (4, 2,−2). However, the embedding (s1, s2) =
(

1
2 ,

1
2

)

turns out to give monopole

numbers Ni = (1, 1, 0), and so is stable, as it must be given that it is equivalent to the

N = −1 monopole of the SU(2)×U(1)2-preserving category. Since this (and its conjugate)

is the only stable monopole of this category, we see that the only three stable cases preserve

SU(2) × U(1)2, with N = 0,±1.

2.3 Topology

Since topological charge can cause stability for some configurations, it is worth identifying

how these charges are classified for non-abelian monopoles. In the present instance the

topology of the internal manifold is that of a sphere, with Euler number χ = 2. This is not

changed by the presence of the conical defects, since the contribution to χ from the singu-

larities compensates for the reduction that the angular defect causes in the contribution to

χ from the integral of R over the internal space.

The non-trivial topology associated with the Dirac monopole embedded into the gauge

group G is similarly classified by π1(G). This can be seen explicitly in the so called Wu-

Yang construction [19], used above, wherein the extra dimensions are covered with two
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Gauge group G π1(G) Center

SU(N) 1 ZN
SO(2k + 1) Z2 Z2

SO(4k) Z2 Z2 × Z2

SO(4k + 2) Z (k = 0), Z2 (k ≥ 1) Z4

Sp(N) 1 Z2

E8 1 1

E7 1 Z2

E6 1 Z3

F4 1 1

G2 1 1

Table 2. π1 and centres for the simple Lie groups.

patches, each with a non-singular gauge potential A±. In this case the A± must differ on

the overlap of the two patches at the equator by a single-valued gauge transformation, and

so defines a map from S1 to G that is classified by π1(G).8

For non-abelian groups the integer corresponding to this topological classification can

be written explicitly in terms of the representative gauge fields. Suppose for example, the

gauge algebra is SU(N), and all charged fields transform in the adjoint representation.

Then the global group is actually G = SU(N)/ZN because the adjoint representation uses

the same matrix to represent two group elements that differ only by an element of the

group’s center. Define the magnetic flux, Φ, using the following integral,

Φ =
1

N
Tr exp

[

ig

∮

ds (A+M −A−M)
dxM

ds

]

, (2.27)

where the path is taken as the closed loop around the equator in the overlap of the two

patches on which the two gauge configurations, A+ and A−, are respectively defined. This

expression, when evaluated using explicit gauge configurations, produces a phase

Φ = exp

(

2πiL

N

)

, (2.28)

where 0 ≤ L < N is the integer that labels the corresponding element of

π1(SU(N)/ZN ) = ZN .

Table 2 gives π1 and the centers of all the simple Lie algebras. Amongst the known

anomaly-free non-abelian gauge groups in 6D chiral supergravity, those involving non-

Abelian gauge groups with non-trivial topology are the classic E7×E6×U(1)R model [20],

8If Higgs fields spontaneously break G → H, then magnetic charge would instead be classified by π1(H).

For smooth configurations without Dirac strings this reduces to the subgroup of π1(H) consisting of those

elements which are contractible in G, denoted π1(H)G . This is equivalent to the familiar classification of

non-singular monopoles by π2(G/H) (interpreted as classifying the map from the S2 at spatial infinity to the

vacuum manifold G/H) due to the isomorphism π1(H)G ∼ π2(G/H). Similarly, in the absence of a Higgs

contribution to topological charge the classification π1(H) reduces to the Wu-Yang classification π1(G),

since π1(H)/π1(H)G ∼ π1(G).
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for which all hyper-multiplets are singlets under E6; as well as two models by Avramis

and Kehaghias [21], respectively involving E6 (with hyper-multiplets only in the adjoint

representation) or SO(N)’s.

The example G = SU(3) × U(1)R

For the Dirac monopole embedded in SU(3), with all fields charged under the SU(3) sub-

group transforming in the adjoint representation, as described above the global group is

actually Ĝ = [SU(3)/Z3] × U(1)R, and the topological classification is given by:

π1(Ĝ) = π1(G) + π1(U(1)R)

= π1(SU(3)/Z3) + π1(U(1)R)

= Z3 + Z (2.29)

Notice that each simple factor of Ĝ gives rise to its own topological classification, provided

that the monopole lies at least partially in the factor of interest.

If the monopole is embedded purely within the SU(3) then the topology is simply

classified by π1(SU(3)/Z3) = Z3. In the case where the monopole preserves an unbroken

SU(2) × U(1)2 we have seen that it can always be written as9

gA± = −1

2
M (cos θ ∓ 1) dφ

where M = 2N Q2 =
N

3







1

1

−2






, (2.30)

and, as before, Q2 is the second Cartan generator of SU(3) while N is the integer of the

Dirac quantisation condition. In this case the associated flux evaluates to Φ = ei2πN/3 ∈ Z3,

showing that it is L = N (mod 3) that labels the distinct topological class [4]. The finding

that linearised stability requires N = 0,±1 is therefore consistent with the expectation

that there is only one stable monopole in each of the three independent topological sectors.

3 The instability’s endpoint

The previous sections argue that monopole-supported flux compactifications in 6D super-

gravity are generically unstable, provided the monopole is embedded within a non-Abelian

factor of the gauge group. We now ask what the new configuration is towards which such

an unstable non-Abelian monopole evolves.

As mentioned above, this problem is well understood in the case of pure Yang-Mills

(YM) theory, where the instability describes the decay into the lightest monopole within

the given topological class [5]. Our goal is to address what such a decay implies when the

monopole in question supports an extra-dimensional compactification. We do so in this

section starting with simple spherical compactifications of extra-dimensional Yang Mills

9More generally, a monopole in SU(3) can always be written as gA± = − 1

2
M (cos θ ∓ 1) dφ where

M = 2L Q2 + diag(r1, r2, r3), L is one of 0, 1, 2 and r1, r2, r3 are integers that sum to zero [4].
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and Einstein-Yang-Mills (EYM) systems (including a cosmological constant, Λ). We defer

the qualitatively different case of EYM-Dilaton theories relevant to higher-dimensional

supergravity to the next section.

Concretely, consider the unstable N = 2 SU(3) monopole described in previous sec-

tions, for which g(q1, q2) = (0, 4). Because N 6= 0 (mod 3), this state has a non-trivial

topology that prevents it from decaying into a topologically trivial configuration. It must

instead decay into the stable monopole with N = −1, doing so by emitting magnetic

radiation (see e.g. [3, 5]).

3.1 Einstein Yang-Mills theory

When the decaying monopole supports a compactified extra dimension, its decay should

also cause the extra-dimensional geometry to change. But since the decay also reduces the

4D monopole energy density, its decay should also change the curvature of the large dimen-

sions we observe. We first show how this takes place in detail, working within the Einstein-

Yang-Mills system. In this case, we must solve both the Einstein and Maxwell equations

of motion to check that the expected stable monopole is a possible endpoint solution.

Consider then six-dimensional gravity coupled to a Yang-Mills field and a positive 6D

cosmological constant, Λ. We start with a solution, Mink4×S2, for this system comprising

an unstable SU(3) monopole supporting two spherical extra dimensions, with Λ adjusted

to allow the observable four dimensions to be flat. This initial monopole then decays into

the topologically connected stable monopole as above, whilst the background geometry

appropriately adjusts itself. We do not try to follow the time-dependence of this process in

its full transient glory. Instead we directly seek the endpoint solution to which it ultimately

evolves, under the assumption that this endpoint also remains maximally symmetric in the

4 visible and 2 internal dimensions.

It turns out that we are led in this way to two possible endpoint solutions. Either the

internal sphere shrinks whilst the non-compact directions curve into anti-de Sitter space

(AdS), or the sphere grows whilst the 4D spacetime curves into a de Sitter (dS) universe.

Based on the principle that the evolution lowers the effective 4D scalar potential energy,

we expect it is the AdS solution towards which the system evolves.

Endpoint solutions

We start with the 6D EYM action,

SEYM =
1

κ2

∫

d6x
√−g

[

R− κ2

4
Tr (FMNF

MN) − Λ

]

, (3.1)

containing only gravity, gMN , the Yang-Mills field, AM , and the 6D positive cosmological

constant, Λ. The equations of motion for this system become

RMN =
κ2

2
Tr (FMPF

P

N
) + gMN

(

Λ

4
− κ2

16
TrF 2

)

(3.2)

∇MF
MN − igAMF

MN = 0 , (3.3)
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for which we seek solutions having maximal symmetry in both 4 large dimensions and 2

small ones

ds2 = gµνdx
µdxν + a2

(

dθ2 + sin2 θdφ2
)

(3.4)

with the maximally symmetric metric, gµν , satisfying Rµν = 3λgµν , with 4D curvature

constant λ. In our conventions the cases λ > 0, λ = 0 or λ < 0 respectively correspond to

dS, flat and AdS geometries.

Consider now solutions for which the Maxwell field strength only has nonzero internal

components, Fmn, and depends only on the coordinate θ (as in the monopole solution).

The equation of motion for the gauge field then implies

Fθφ =
qaQa

2
sin θ (3.5)

where the constants qa again parametrise the monopole strength. Recalling our convention

Tr(QaQb) = γab = γ2δab, we find after use of the 4D components of Einstein’s equations,

Rµν = 3λgµν = gµν

(

Λ

4
− κ2q2

32 a4

)

, (3.6)

where q2 = γabq
aqb. From the 2D Einstein equations we instead find

Rmn =
gmn
a2

= gmn

[

3κ2q2

32 a4
+

Λ

4

]

, (3.7)

leading to the following conditions for λ and a:

3λ =

(

Λ

4
− κ2q2

32 a4

)

(3.8)

1

a2
=

3κ2q2

32 a4
+

Λ

4
=
κ2q2

8 a4
+ 3λ . (3.9)

If we choose the initial monopole to be the unstable configuration having qa = qai =

(0, 4/g), then q2i = 16γ2/g2. It is for this configuration that we tune the 6D cosmological

constant to obtain a flat 4D spacetime, λ = 0. This fixes the initial radius of the internal

sphere and the 6D cosmological constant to be

a2
i =

κ2q2i
8

=
2κ2γ2

g2
and Λ =

κ2q2i
8a4

i

=
1

a2
i

=
g2

2κ2γ2
. (3.10)

To find the endpoint, we now take the monopole charge to be the topologically stable

one having N = −1 and so qaf = (0,−2/g), and so q2f = 4γ2/g2 = 1
4 q

2
i . Since Λ is no longer

free to be adjusted, we now solve eqs. (3.8) and (3.9) for the final radius, af , of the 2D

sphere, and the curvature, λf , of the final 4D spacetime.

We find in this way that the 4D curvature becomes

3λf =
1

4a2
i

−
κ2q2f
32 a4

f

=
1

4a2
i

− a2
i

16 a4
f

, (3.11)
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while the new radius of the 2-sphere is given by

1

a2
f

=
1

4a2
i

+
3κ2q2f
32 a4

f

=
1

4a2
i

+
3 a2

i

16 a4
f

. (3.12)

This has two roots, given by

a2
f± = 2 a2

i



1 ±

√

1 − 3

4

q2f
q2i



 = 2 a2
i

[

1 ± 1

4

√
13

]

, (3.13)

and so af+ ≃ 1.95 ai while af− ≃ 0.444 ai. The corresponding 4D curvature then becomes

3λf± =
1

a2
i

(

7 ± 2
√

13

29 ± 8
√

13

)

, (3.14)

and so λf+ ≃ 0.0819/a2
i and λf− ≃ −0.452/a2

i . Clearly the radius of the sphere increases

for the dS solution and decreases for the AdS one.

Energetics

Intuitively, one would expect the AdS case to be the natural endpoint, since one expects

to obtain a negative potential energy after lowering it below the initially zero value needed

to ensure a flat 4 dimension, as we next check explicitly. To this end define the potential

energy (per unit 3D volume), E , of the effective 4D theory as the sum of the static 6D energy

(i.e. gradient, magnetic and potential energy), integrated over the extra dimensions, with

E =
1

κ2

∫

d2x
√
g2

[

−R(2) +
κ2

4
TrFmnF

mn + Λ

]

. (3.15)

Here R(2) = 2/a2 denotes the 2D curvature scalar, while the magnetic energy goes as

TrFmnF
mn = q2/2a4, leading to

E =
4πa2

κ2

[

− 2

a2
+ Λ +

κ2q2

8 a4

]

=

(

4πa2

κ2

)2
κ2

4π

[

− 2

a4
+

Λ

a2
+
κ2q2

8 a6

]

. (3.16)

The second equality of eq. (3.16) pulls out four powers of the 4D Planck mass, M2
p =

4πa2/κ2, which is useful when verifying that E as defined reproduces the correct equations

of motion when used in the 4D field theory. It is useful to display the factors of Mp

explicitly in this way because transforming to the 4D Einstein frame ensures that these

are held fixed when the 4D field a is varied to minimize the potential energy, leading to

the condition
∂(E/M4

p )

∂a
=

2κ2

πa3

[

1

a2
− Λ

4
− 3κ2q2

32 a4

]

= 0 , (3.17)
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in agreement with eq. (3.9) determining a. The 4D Einstein equations similarly equate

Rµν = 3λgµν to
(

E/M2
p

)

gµν , leading to the condition

6λ = − 2

a2
+ Λ +

κ2q2

8 a4

=
Λ

2
− κ2q2

16 a4
, (3.18)

where the last equality — which agrees with eq. (3.8) — uses the field equation, eq. (3.17),

for a.

We may now compare the value of E when evaluated at the initial and final config-

urations considered above. Evaluating using our previous results for ai, q
2
i and Λ leads

to Ei = 0 for the initial unstable solution, consistent with having tuned Λ to ensure the

flatness of the initial 4D geometry. For the two candidate endpoint solutions, the potential

energy is instead

Ef± =
4π

κ2

[

−2 + Λa2
f± +

κ2q2f
8 a2

f±

]

=
4π

κ2

[

−2 +

(

af±
ai

)2

+
q2f
q2i

(

ai
af±

)2
]

(3.19)

=
2π

κ2

(

14 ± 4
√

13

4 ±
√

13

)

, (3.20)

and so Ef+ ≃ 3.74
(

2π/κ2
)

> 0 and Ef− ≃ −1.07
(

2π/κ2
)

< 0. Clearly we have af+ >

ai > af−, and Ef+ > Ei > Ef−, indicating that the endpoint solution reached after the

instability indeed corresponds to a shrunken extra-dimensional sphere together with 4D

AdS space.

4 Endpoint revisited: including the dilaton

We next reconsider the problem of direct interest for higher dimensional supergravity, by

supplementing the Einstein-YM theory with an appropriate scalar dilaton field. In this

case we find the endpoint configurations do not preserve the maximal symmetry of the

underlying 4D and/or 2D geometries of the original unstable monopole-supported system.

As emphasised in [22], the presence of the dilaton crucially changes the dynamics of the

system, and this considerably complicates the search for the new endpoint solutions.

To see why the dilaton is so different we again start with a monopole-supported solution

to 6D chiral gauged supergravity with couplings chosen to allow a Mink4×S2 solution with

4 flat large dimensions, see eq. (2.10), (2.11). Now, however, if the monopole decays to

its stable topological cousin, a new maximally symmetric solution supported by the stable

monopole no longer satisfies the field equations (2.2), which require σ = 0 together

with the Einstein and Yang-Mills equations. In detail, the equations of motion under

the maximally symmetric ansatz ds2 = ds24 + a2(dθ2 + sin2 θdφ2), Fθφ = qa Qa

2 sin θ and

σ = σ0 = const, with ds24 the metric on 4D (A)dS or Minkowski spacetime, together imply
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the 4D curvature λ = 0, a e−κσ0/4 = κ/2
√

2g1 and q2 = 1/g2
1 . This is to be compared with

the initial configuration eq. (2.10), (2.11). So, although one combination of the parameters,

say a eκσ0/4, is left free thanks to the classical scaling symmetry, the magnetic flux in

particular is fixed to its original – unstable — magnitude if we insist on keeping the maximal

symmetries. This shows that once the monopole flux decays the dilaton gradient, ∂Mσ, is

necessarily nonzero, thereby picking out preferred directions in the underlying spacetime.

A key question asks whether this gradient points in the compact two directions, ∂mσ 6=
0, or in the large spacetime directions, ∂µσ. In this section we first argue that the system is

likely to prefer growing nonzero gradients in the large 4 dimensions, and then describe the

relative merits of two classes of candidate endpoint solutions that break the 4D spacetime

symmetries: a one-parameter family of supersymmetric solutions [9]; and a class of new

solutions to which one is led by adapting the arguments of the previous section to include

the dilaton.

4.1 4D or 2D: Which symmetries break?

We now argue that for 6D supergravity it is the 4D spacetime symmetries that generi-

cally prefer to break. If true this is somewhat surprising, since the instability revealed

by the linearised analysis is in modes that vary in the internal 2 dimensions and not the

macroscopic 4 dimensions. However, it is known [10] that all of the axially symmetric

bulk solutions having AdS 4D geometry necessarily have a curvature singularity in the 2D

geometry at the position of one of the two source branes.10 Any decay to a solution of the

form AdS4 ×M2 therefore necessarily requires the development of a curvature singularity

in the 2D geometry at the position of one of the source branes, even if the initial unsta-

ble solution has no such a singularity. But the divergence of bulk fields at a singularity

is related to the physical properties of the brane which is situated there [11, 12], with a

curvature singularity in particular implying a brane coupling to the bulk dilaton. Since it

is not clear how such a change to intrinsic brane properties can be triggered by the decay

of a monopole in the bulk, we instead explore the possibility that it is the 4D spacetime

symmetries that break.

The simplest way to see the necessity for a curvature singularity is to recognize that the

effective 4D potential energy turns out to depend only on the near-brane limit of the σ field

when its derivatives, ∂mσ, point purely along the 2D directions [15]. That is, we evaluate

E =

∫

d2x
√
g2

[

− 1

κ2
R(2) +

1

4
∂mσ ∂

mσ +
1

4
eκσ/2 TrFmnF

mn +
8g2

1

κ4
e−κσ/2

]

, (4.1)

at an arbitrary solution to the field equations, eqs. (2.2), assuming only that all tensor

components point purely along the compact 2 dimensions. Use of the Einstein and dilaton

equations in particular then show [15] that

E = − 1

2κ

∫

d2x
√
g2 σ , (4.2)

10This is also a corollary of the fact [10] that all of the solutions having only conical singularities at the

branes have 4D geometries that are flat.
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which vanishes on a smooth manifold. For example, when evaluated for the particular

solutions of eqs. (2.4) and (2.5), we find (keeping in mind the conical singularities at

ρ = ρ±)

E = −π
κ

∫ ρ+

ρ−

dρ ∂ρ

[√
g2 ∂

ρσ
]

=
2π

κ2

[

h(ρ−)

ρ−
− h(ρ+)

ρ+

]

= 0 . (4.3)

In the presence of singularities localized at source branes, each brane can be isolated

within a small circle that acts as the boundary of the bulk geometry, leading the right-hand-

side of eq. (4.2) to evaluate to a sum of terms involving the radial dilaton derivative, n ·∂σ,

evaluated at the brane positions. But the presence of such a nonzero scalar gradient near

the codimension-2 brane requires φ to diverge logarithmically there, and the stress energy

of this configuration makes the curvature also diverge. This argument is in agreement with

the explicitly known solutions of ref. [10].

But the near-brane dilaton derivative is related [11, 12] by the bulk-brane matching

conditions to the effective codimension-2 brane tension, T2(φ), with n ·φ being proportional

to its derivative T ′
2. As such, the near-brane dilaton derivative cannot change without

there also being a physical change to the source branes, making such a configuration an

unlikely endpoint for an unstable monopole. This being said, we shall also find the necessity

of new types of singularities in some solutions breaking the 4D symmetries, and so this

argument cannot be regarded as decisive until the interpretation of those singularities is

better understood.

With this motivation we next examine two categories of candidate endpoint solutions

that break the 4D symmetries.

4.2 Supersymmetric AdS3 × S̃3

Supersymmetric solutions are always attractive options when seeking stable endpoints from

initially unstable initial configurations, and it is the remarkable scarcity of such solutions

having the form M4 ×M2, with M4 = Mink4 or AdS4, that helps make the endpoint of

monopole decay in 6D supergravity such a puzzle. The only known solutions of this type

have M4 = Mink4, M2 = S2, and align the monopole in the U(1)R directions with monopole

number N = ±1 [1].

Other supersymmetric solutions do exist [9], however, they just have fewer 4D space-

time symmetries. These solutions have geometries AdS3 × S̃3, where S̃3 denotes a one-

parameter family of ‘squashed’ 3-spheres. The field configurations have constant dilaton,

∂Mσ = 0, and

ds2 = ds2AdS3
+ a2

(

ω2
1 + ω2

2

)

+ b2ω2
3

H3 = ξ
(

ω1 ∧ ω2 ∧ ω3 +
ε3
a2b

)

(4.4)

F2 = k ω1 ∧ ω2 ,

where ds2AdS3
is the line-element for AdS3 and ε3 denotes the volume 3-form for the internal

3D geometry. The ωm denote the left-invariant 1-forms on the 3-sphere, that satisfy dωm =

−1
2 ǫmnp ωn ∧ ωp, and so

ω1 + iω2 = e−iψ (dθ + i sin θ dφ) , ω3 = dψ + cos θ dφ , (4.5)
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where (θ, φ, ψ) are Euler angles on the 3-sphere.

The equations of motion impose the following three relations among the solution’s four

parameters, a, b, ξ and k [9]:

b2 = κ5/2ξ , a2 =
κ3k

4g1
=

1

16g2
1

(

1 ±
√

1 − 32κ1/2g2
1ξ

)

, (4.6)

in terms of which the AdS3 Ricci tensor is Rαβ = 2λ gαβ with λ = −b2/(4a4).

Is this the endpoint of the evolution away from the unstable monopole? Such a scenario

would be very attractive, indicating a dynamic spontaneous compactification wherein the

monopole instability triggers one of the large 4 dimensions to roll up into one of the

directions in S̃3. And because λ is negative this might be argued to be favoured energetically

in terms of an appropriate 3D potential energy. Better yet, the supersymmetric Mink4×S2

solution can be obtained formally from the AdS3×S̃3 solutions by taking the limit b→ 0 [9],

indicating there might be a plausible path through field space leading from the initial

unstable configuration to the final supersymmetric one.

There are a number of possible objections to the proposal that these solutions represent

to endpoint of the monopoles of present interest, however. Not least, the natural way to

obtain 4 large directions from AdS3× S̃3 is by taking the lone squashed direction to become

large, b ≫ a, rather than taking b ≪ a. However in the limit b ≫ a the curvature of the

large 3 dimensions becomes larger and not smaller, and there is furthermore an obstruction

to taking this limit within the supersymmetric solutions since it formally would require

taking ξ very large, but a2 becomes complex in this limit. We therefore next seek other

options for the decay endpoint.

4.3 Deking the dilaton

As noted above, it is the dilaton that appears to prevent the system’s relaxation towards a

maximally symmetric solution, and so removes the attractive picture obtained in the EYM

system described in §3. In the remainder of this section we use an elegant trick [23] that

reformulates the EYM-dilaton system as a dilaton-free system in higher dimensions. We

do so with the goal of exploring whether the analysis of §3 can lead to a better candidate

endpoint, for which the preserved maximal symmetries involve the fictitious dimensions

associated with the dilaton rather than being part of the physical 6 dimensions of our

starting supergravity.

The idea behind the trick is that the dilaton can be regarded as a modulus obtained

by compactifying a simpler system in higher dimension.11 In particular, we consider EYM

theory in (6 + n) dimensions, chosen so that its dimensional reduction to 6D leads to

the dilaton-EYM theory of interest. With care, solutions in the higher dimensional non-

dilatonic theory can be reduced to solutions of dilatonic Einstein Yang-Mills in six dimen-

sions, and 6D supergravity configurations can be ‘oxidised’ to higher dimensional solutions.

11A similar logic underlies the discussion of F -theory vacua in Type IIB string compactifications having

nontrivial dilaton profiles.
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Figure 1. The oxidation-reduction cycle used to generate solutions in the 6D dilatonic theory.

Ref. [24] performs a similar analysis to study the dynamics of instabilities in warped de Sit-

ter solutions to 6D dilatonic Einstein Maxwell theory, building on studies of the dilaton-free

model [25].

This trick is useful because the stability analysis of previous sections can be translated

word-for-word to the higher dimensional system, at least for unwarped backgrounds.12 In

particular, an unstable monopole-supported configuration with geometry Mink(4+n) × S2,

is unstable for large enough magnetic quantum numbers, and applying the arguments of

§3 to the higher-dimensional system indicates a decay to AdS(4+n) × S2 supported by a

stable monopole. The logic (illustrated in figure 1) then is to dimensionally reduce both the

unstable solution and its stable endpoint down to 6D to find the corresponding transition

to which this points in the lower-dimensional dilaton system.

4.3.1 Oxidation/reduction

To proceed in detail we start with the D = 6 + n action [23, 24]

S =
1

κ2
D

∫

dDx
√−gD

[

R(D) −
κ2

D

4
TrF2 − Λ

]

, (4.7)

whose equations of motion are

RΛΓ =
κ2

D

2
Tr (FΛΩF Ω

Γ
) +

gΛΓ

(D − 2)

(

Λ − κ2
D

4
TrF2

)

(4.8)

∇ΛFΛΓ − igAΛFΛΓ = 0 .

12The bilinear action for the relevant modes is identical in this case (see equation (44) of [26]).
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To dimensionally reduce we seek solutions to these equations having the form13

ds2D = gΛΓ dxΛdxΓ = ĝMN(x) dxMdxN + e2ϕ(x)gab(y) dyadyb

= e−nϕ(x)/2gMN(x) dxMdxN + e2ϕ(x)gab(y) dyadyb (4.9)

FMN = FMN(x) and FaM = Fab = 0 .

Here gab(y) is an n-dimensional maximally-symmetric metric, whose curvature scalar is:

gabRab = n(n − 1)K, for constant K. Furthermore, the above configuration is the most

general one consistent with this maximal symmetry, which ensures that solutions to the

truncated action are guaranteed also to be solutions of the full higher-dimensional equa-

tions. (Such a configuration is called a ‘consistent’ truncation [27].)

With this ansatz the action of the truncated 6D theory becomes [23, 24]

S =
1

κ2

∫

d6x
√−g

[

R− n(n+ 4)

4
∂Mϕ∂

Mϕ− κ2

4
enϕ/2 TrF 2 (4.10)

− Λe−nϕ/2 +Kn(n− 1) e−(n+4)ϕ/2

]

,

where we define κ2 := κ2
D/V and FMN := V 1/2FMN , with V the volume of the n-dimensional

manifold computed with the metric gab. Finally, defining

κσ =
√

n(n+ 4) ϕ and ζ2 =
n

n+ 4
, (4.11)

and so n = 4ζ2/(1 − ζ2), allows the action to be written

S =
1

κ2

∫

d6x
√−g

[

R− κ2

4
∂Mσ ∂

Mσ − κ2

4
eζ κσ/2 TrF 2 (4.12)

− Λ e−ζ κσ/2 +K
4ζ2(5ζ2 − 1)

1 − ζ2
e−κ σ/2ζ

]

.

This shows that the 6D supergravity action, eq. (2.2), is obtained in the formal limit where

K = 0 and ζ → 1 (and so n→ ∞), provided we also identify Λ = 8g2
1/κ

2.

4.3.2 The rugby ball and its decay

As an application consider the following simple monopole-supported compactification from

D to D − 2 dimensions:

ds2
D

= gAB dxAdxB + a2(dθ2 + sin2 θ dφ2)

Fa
θφ =

qaD
2

sin θ (4.13)

where A,B, . . . = 0, 1, . . . , n+3, for which directions the d = (D−2) = (4+n)-dimensional

metric is

RAB = (d− 1)λd gAB = (D − 3)λd gAB . (4.14)

13The indices Γ, Λ, . . . run from 0 to n+5, while indices a, b, . . . run from 1 to n and 6D indices M, N, . . .

run from 0 to 5 as before. We reserve A,B, . . . to run from 0 to n + 3 in later applications.
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Using this ansatz in the D-dimensional equations of motion allows their content to be

boiled down to

(D − 3)λd = − 1

D − 2

[

κ2
D
q2

D

8a4
− Λ

]

(4.15)

1

a2
=
κ2

D
q2

D

8a4
+ (D − 3)λd , (4.16)

whose solutions are

a2
± =

(D − 2)

2Λ

[

1 ±
√

1 − (D − 3)

2(D − 2)2
Λκ2

D
q2

D

]

(4.17)

λd =
1

(D − 3)2

[

Λ − 1

a2
±

]

. (4.18)

Eliminating q2
D

gives the 2-sphere radius in terms of the d-dimensional curvature:

a2
± =

1

Λ − (D − 3)2λd
=

1

Λ − (n+ 3)2λd
. (4.19)

Applying these results to an initial geometry Mink4 × S2 supported by an unstable

monopole having charge q2 = q2i shows that the parameter Λ must be tuned to

Λ =
1

a2
i

=
8

κ2
D
q2

Di

=
8

κ2q2i
, (4.20)

in which the final equality cancels the factors of extra-dimensional volume, V , that appear

in the relations between the D- and 6-dimensional versions of κ and q2. Dimensionally

reducing this geometry on n of the flat directions then trivially reproduces the rugby-ball

solution, eq. (2.10), of 6D supergravity (whose decay we wish to study).

As in §3 we suppose the endpoint of the instability in the D-dimensional system also to

be given by solutions to these same equations, but for the smaller charge of the final stable

monopole: q2
D f < q2

D i. And eq. (4.17) implies that shrinking q2 makes a2
+ get larger while

a2
− gets smaller, which eq. (4.18) in turn implies λd+ is positive while λd− is negative. As in

§3 this predicts the endpoint to be a smaller monopole-supported sphere, with negatively

curved large directions.

The idea now is to dimensionally truncate the endpoint monopole-supported D-

dimensional geometry on n of its AdS dimensions, thereby obtaining a candidate end-

point solution for the 6D EYM-dilaton system. To this end it is useful to rewrite the

D-dimensional metric in terms of flat spatial slicings

ds2
D

=
[

dx2 + e2
√
−λd x

(

−dt2 + δij dxidxj + δab dyadyb
)]

+ a2
− dΩ2

2

= e−n
√
−λd x/2

[

−e(2+n/2)
√
−λd x dt2 + en

√
−λd x/2 dx2 + e(2+n/2)

√
−λd x δij dxidxj

+a2
−e

n
√
−λd x/2 dΩ2

2

]

+ e2
√
−λd x δab dyadyb , (4.21)

where i, j, . . . run from 1 to 2, while (as before) a, b, . . . run from 4 to 4+n, and dΩ2
2 denotes

the standard metric on the unit 2-sphere.
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Comparing this last expression with the ansatz, eq. (4.10) allows the dilaton to be read

off from the x-dependence of the n-dimensional truncated metric, giving ϕ =
√
−λd x, or

κσ =
4ζ

1 − ζ2

√

−λd x . (4.22)

Using this in eq. (4.10) then also allows the 6D metric to be identified. Making the change

of variables

z =

∫

en
√
−λd x/4dx =

4

n
√
−λd

en
√
−λd x/4 (4.23)

allows the truncated 6D solution to be written

ds2 = −
(

z

Ln

)2+8/n

dt2 + dz2 +

(

z

Ln

)2+8/n

δij dxidxj +

(

z

Ln

)2

a2
−dΩ

2
2 , (4.24)

and

κσ =
4

ζ
ln

(

z

Ln

)

, (4.25)

where the length scale Ln is defined by

1

Ln
:=

n
√
−λd
4

=
n

4(n+ 3)

√

1

a2
−
− 1

a2
i

, (4.26)

and the expression for λd in terms of a− and ai is used. The final step is to take n → ∞
(ζ → 1) to recover 6D Nishino-Sezgin supergravity. Both L and a− remain finite in this

limit, with

1

L
= lim

n→∞
1

Ln
=

1

4

√

1

a2
−
− 1

a2
i

(4.27)

and

lim
n→∞

a2
− = lim

n→∞
(n+ 4)

2Λ

[

1 ±
√

1 − (n + 3)

2(n + 4)2
Λκ2q2f

]

=
κ2q2f

8
. (4.28)

Combining all expression gives the final result for the candidate endpoint solution to

gauged chiral 6D supergravity

ds2 = dz2 +
( z

L

)2 [

−dt2 + δij dxidxj
]

+
( z

L

)2
a2
−dΩ2

2 ,

κ σ = 4 ln
( z

L

)

and F aθφ =
qaf
2

sin θ . (4.29)

One can check directly that this configuration indeed solves the 6D supergravity equations,

and in fact can be recognized as one of the scaling solutions found in [8], but with the scaling

occurring along a 4D spatial coordinate, z, rather than time. Also noteworthy is the relation

this solution implies between the sphere’s radius, r, and the dilaton: r2 = eκσ/2a2
−, which

is also familiar (but z-independent) from the Salam-Sezgin compactification [1].
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The solution eventually breaks down for small z due to the singularity as z → 0, where

both the dilaton and the 6D Ricci scalar,

R =
2(L2 − 10 a2

−)

z2a2
−

, (4.30)

blow up. Since this singularity has no counterpart in the higher dimensional AdS4+n × S2

EYM solution, its emergence is a consequence of taking the limit n → ∞. The finite-n

geometries may be regarded in this way as providing resolutions of this singularity, along

the lines of the higher-dimensional resolution of dilatonic black hole singularities in string

theory described in ref. [28].

At large z the radius of the compact 2-sphere becomes very large, implying an eventual

breakdown of the 4D effective theory even at very low energies. It is instructive to ask how

the metric varies in the 4D Einstein frame, especially since the dependence on z only arises

as an overall conformal factor (as may be seen using the coordinate change u = ln (z/L)),

ds2 = e2u
(

ηµν dxµdxν + a2
− dΩ2

2

)

, (4.31)

implying the breaking of the 4D maximal symmetry therefore drops out of confor-

mally invariant quantities. Since the volume of the 2 compact dimensions varies as

V2 = (z/L)2a2
− ∝ e2u, the 4D Einstein frame metric scales with u as g

(E)
µν = e2ugµν ,

which is again u-dependent, and in fact turns out to be the same geometry as that of the

6D Einstein frame.

Stability

The stability of this solution follows from that of the corresponding oxidised solution,

AdS4+n×S2, since the fluctuations in the 6D model are a sub-sector of those in the oxidised

model, allowing us to conclude that our proposed endpoint is a stable solution, without

performing the linearised stability analysis from scratch. Fluctuations in the (6+n)D EYM

model divide into two decoupled sectors:

1. The metric fluctuations and gauge field fluctuations in the direction of the U(1)

monopole in the Lie Algebra. These were studied in [29], where they were found to

be stable, in the sense that none violate the Breitenlohner-Freedman bound.

2. The gauge field fluctuations orthogonal to the U(1) monopole. We argued above that

the presence of instabilities in this sector for Mink4 × S2 [2, 6] generalise to higher

dimensions and so these modes are also unstable in the Mink4+n × S2 theory. The

identical argument shows that stable monopoles in Mink4 × S2 oxidise to configura-

tions that are also stable in Mink4+n×S2. The same conclusion should also apply for

AdS4+n×S2, since the Kaluza-Klein mass operator does not depend on the curvature

of the external geometry, but only on the curvature of the internal geometry and the

internal flux.
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Energy

The higher-dimensional picture also argues for there being an energetic criterion which

favours these new solutions as having smaller energy then the initial, unstable one. Given

the non-trivial profile for the dilaton in the large dimensions, an appropriate definition

for the energy is the sum of the 4D dilatonic gradient energy and the potential energy of

the 4D effective theory defined in (4.1), which emerges from the gradient, magnetic and

potential energy in the extra dimensions. Integrating out the extra dimensions, the total

energy density (per unit 3D volume) in the Einstein frame, g
(E)
µν = eκσ/2 gµν , is:

ETOT =
e−κσ

κ2

∫

d2x
√
g2

[

κ2

4
eκσ/2 ∂zσ ∂

zσ −R(2) +
κ2

4
TrFmn F

mn + Λ e−κσ/2
]

, (4.32)

where the overall factor of e−κσ comes from the Weyl rescaling to the Einstein frame of

the 4D volume factor. A non-trivial gradient energy in the dilaton always gives a positive

contribution to the total energy, whereas the 4D potential energy in terms of the dilaton

and volume breathing modes is:

E = −4πa2
−

κ2
e−κσ

1

2a2
−

(

1 − a2
−
a2
i

)

(4.33)

Plugging the endpoint configuration (4.29) into (4.32) shows that the potential energy is

negative, −4πa2−
κ2

8
L2 z4 , and beats the gradient energy,

4πa2−
κ2

4
L2 z4 , giving in total:

ETOT = −4πa2
−

κ2

4

L2 z4
(4.34)

This result should be compared to the initial total energy, for which both the 4D gradient

and potential contributions are zero, and so the energy has been lowered.

4.3.3 The decay of warped configurations

As a second example we extend the above analysis from sphere-monopole compactifications

to the more generic presence of warping, as is required if the two brane tensions are unequal.

We know that configurations with monopole numbers |NI | ≥ 2 are also unstable in warped

brane-world compactifications with positive-tension brane sources [2]. We now seek the

endpoint of this stability, as indicated by the above oxidation/reduction technique.

To do so we first display a warped solution to the (n+6)-dimensional EYM system with

cosmological constant, which reduces to the warped Minkowski solution of the 6D EYMσ

theory. As previously, the instability of the 6D solution is shared by its higher dimensional

representation.14 We identify a plausible endpoint in the higher-dimensional EYM theory,

and reduce it to identify the corresponding candidate endpoint in 6D supergravity.

14Note, however, that the direct linearized analysis made in [2] does not extend to warped solutions in

(6+n)D because the bilinear action for the modes of relevance depends on (n+4) in the warped case [26].

– 24 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
8

The higher-dimensional warped solution

We again start from the (n+ 6) dimensional EYM action (4.7)

S =
1

κ2
D

∫

dDx
√−gD

[

R(D) −
κ2

D

4
TrF2 − Λ

]

. (4.35)

The relevant static warped solution to the corresponding field equations is obtained by

a Weyl rotation of a known black-hole like solution [30], as was done in [15] (a similar

solution and method were also used in [31]). The result is

ds2D = r2 gABdxAdxB +
dr2

hD(r)
+ ǫ2D hD(r) dφ2 (4.36)

and Frφ = −ǫDq
a
D
Qa

rn+4
, (4.37)

where gAB is a d = (n + 4)-dimensional, maximally symmetric metric, with RAB = (d −
1)λd gAB, and we have introduced an additional parameter, ǫD, which will allow us to

reach the unwarped compactifications via a smooth limit. The function hD(r) is given

explicitly by

hD(r) = λd +
M

rn+3
− Λr2

(n+ 4)(n + 5)
− κ2

Dq
2
D

2(n+ 4)(n + 3) r2(n+3)
, (4.38)

where M is an integration constant that can be positive or negative. This solution can

also be found by solving directly the equations of motion, for which the Einstein equations

reduce under the above ansatz to

RAB = −gAB

[

−(n+ 3)λd
r2

+
h′

D

r
+

(n+ 3)hD

r2

]

= −gAB

[

κ2
D
q2

D

8 r2(n+4)
− Λ

4

]

(4.39)

Rmn = −1

2
gmn

[

h′′
D

+
(n+ 4)h′D

r

]

= gmn

[

3κ2
Dq

2
D

8 r2(n+4)
+

Λ

4

]

. (4.40)

Ref. [31] shows that this yields the desired warped 6D solutions to Nishino-Sezgin super-

gravity found in [15] once the limit n → ∞ is taken, making them a good starting point

for seeking the endpoint of the decay of the underlying monopole.

The solution above (4.36), (4.38) is very similar to that studied in [15], section 3 (see

also [14, 16]). The geometry is well defined in the region where the metric function hD(r) is

positive, and this implies M > 0 when λd ≤ 0, while M can be negative for λd > 0. Similar

to what is shown in [15], the geometry pinches off at the points where hD(r) vanishes.

There are two such real roots, r±, since hD(r) → −∞ as r → 0 and r → ∞, and changes

sign only twice.

Moreover, because hD vanishes linearly near r = r±, being well approximated by

hD(r) ∼ h′D (r±) (r − r±), the 2D internal metric is approximately conical at these

points, with:

ds22 ∼ dR2
± +

(

1 − δ±
2π

)2

R2
±dφ2 . (4.41)
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Here R± = 2
√

(r − r±)/h′D(r±), and the deficit angles are given by:

δ±
2π

= 1 − 1

2
ǫD h

′
D(r±) . (4.42)

These singularities are sourced by codimension-two branes, with actions

Sbrane = −T±
∫

dD−2y
√−γ± , (4.43)

and whose tensions satisfy κ2
D
T± = 2δ±. On reduction to the 6D theory these become

3-branes with tensions T± given by T±V .

Finally, since the internal space is compact, there is as usual a Dirac quantization

condition for the magnetic flux. Covering the space with two patches that respectively

incorporate r±, à la Wu and Yang, allows the gauge potential to be written

A± =
ǫDq

a
DQa

(n+ 3)

(

1

rn+3
− 1

rn+3
±

)

dφ . (4.44)

These are related by a single-valued gauge transformation on the overlap only if

− g eaI

ǫDq
a
D

n+ 3

(

1

rn+3
+

− 1

rn+3
−

)

= NI , (4.45)

where eaI are the adjoint charges discussed in earlier sections, and NI is an integer.

In order to have an expression for h in terms of the two real roots, we can write it as

follows (ℓ := n+ 3):

hD(r) = λd

[

1 − rℓ+
rℓ

][

1 − rℓ−
rℓ

]

(4.46)

+
Λ

(ℓ+ 1)(ℓ+ 2)

1

r2+(rℓ+ − rℓ−)

1

r2ℓ

[

rℓ
(

r2 ℓ+2
+ − r2 ℓ+2

−

)

− r2 ℓ+2
(

rℓ+ − rℓ−

)

−(r+r−)ℓ
(

rℓ+2
+ − rℓ+2

−

)]

where now it is clear that h(r±) = 0. By comparing (4.38 and 4.46), the parameters r±
can be related to the original parameters of the solution as:

M =
Λ

(ℓ+ 1)(ℓ+ 2)

(r
2(ℓ+1)
+ − r

2(ℓ+1)
− )

r2+(rℓ+ − rℓ−)
− λd

(

rℓ+ + rℓ−

)

(4.47)

κ2
Dq

2
D

2ℓ(ℓ+ 1)
= (r+r−)ℓ

[

Λ

(ℓ+ 1)(ℓ+ 2)

(rℓ+2
+ − rℓ+2

− )

r2+(rℓ+ − rℓ−)
− λd

]

(4.48)
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and moreover r+ = 1, which amounts to a choice of coordinates. Meanwhile, the tensions

of the branes can be related to the bulk parameters via eq. (4.42):

1 − T+κ
2
D

4π
= (4.49)

1

2

ǫD

rℓ− − 1

(

(

ℓ+ 2 − 2 (ℓ+ 1) rℓ− + ℓ r2 ℓ+2
−

) Λ

(ℓ+ 1)(ℓ+ 2)
− ℓ

(

rℓ− − 1
)2
λ

)

1 − T−κ2
D

4π
= (4.50)

1

2

ǫD

rℓ+1
− (rℓ− − 1)

((

− ℓ+ 2
(

ℓ+ 1
)

rℓ+2
− −

(

ℓ+ 2
)

r2 ℓ+2
−

)

Λ

(ℓ+ 1)(ℓ+ 2)
+ ℓ
(

rℓ− − 1
)2
λ

)

.

Unwarped limit. As an aside, we show how the above higher dimensional warped back-

ground reduces to the known unwarped solution as the warp factor goes to one, r− → r+.

This limit can be taken by making the change of coordinates:

r =
r+
2

((1 + α) + (1 − α) cos θ) , (4.51)

where we have defined α := r−/r+. We then take α = 1 + ξ together with the limit ξ → 0,

but insist that ξ ǫD → εD, a finite constant. In this way, the metric assumes the form of

the rugbyball

ds2D = gABdx
AdxB + a2

(

dθ2 + β2 sin2 θdφ2
)

, (4.52)

where the radius and deficit angle are, respectively,

a2 =
1

Λ − ℓ2λ
and (4.53)

β2 =
ε2

D

4a4
, (4.54)

and the gauge field is that of the monopole

A± =
εDq

a
D
Qa

2
(cos θ ∓ 1) dφ . (4.55)

The quantisation condition (4.45) reduces to −g εD q
a
D
eaI = NI , and eq. (4.48) tells us that:

ℓλ =
1

(ℓ+ 1)

[

Λ − κ2
Dε

2
Dq

2
D

8β2a4

]

, (4.56)

which is precisely one of the constraints encountered from the equations of motion for the

unwarped rugbyball. Meanwhile, the boundary conditions (4.49), (4.50) also reduce to the

expected ones:

T+κ
2
D

4π
= 1 − β (4.57)

T−κ2
D

4π
= 1 − β . (4.58)

We obtain an additional constraint by putting together eqs. (4.48) and (4.49), (4.50): after

some manipulation one arrives at the condition λ = 0. Therefore, we are able to take

the unwarped limit only for flat (n + 4)D slices, and the warped generalizations for the

dS4+n×S2 and AdS4+n×S2 solutions are yet to be discovered. Finally, taking furthermore

β → 1 we recover the equations for the sphere (4.16), (4.19).
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The warped endpoints: upstairs and downstairs

Back to the main line of argument, having established the higher dimensional warped

configurations that are assumed in the presence of 3-branes, we now ask what happens to

these configurations when they are unstable. As described above, we expect both the 6D

and D-dimensional warped solutions to be unstable when there are monopoles numbers

|NI | > 1. The monopole numbers depend on the charges present, as well as the parameters

qaD, ǫD and r−, via the Dirac Quantisation condition (4.45). The d = 4 + n-dimensional

curvature, λd, completes the description of the solution (4.36)–(4.38), but not all of these

parameters are independent, due to the equations of motion (4.48), (4.49), (4.50). Thus

we can specify a given solution completely with one parameter, say, qa
D
. Beginning with

an unstable solution, qa
D i, the monopole field strength will decay conserving its topological

flux, as we have seen previously, and the geometry will adjust appropriately according

to the equations of motion. A reasonable endpoint in the D-dimensional EYM theory

is then a warped configuration within the same class (4.36)–(4.38), with new parameters

qa
D f , ǫD f , r−f

and λdf
.

It remains to play the same game as in unwarped case to discover how the geometry

and dilaton respond to the decay of the monopole in 6D supergravity. The rules of the

game are by now familiar; we begin with a warped dilatonic 6D model, tuning the bulk

cosmological constant, Λ, to allow for flat 4D slices in the initial unstable configuration,

with monopole strength qa = qai and brane tensions T±. Uplifting this model to a non-

dilatonic D-dimensional theory, it is easy to see that the decay of the monopole to its stable

topological cousin curves the (4+n)D slices from λdi
= 0 to λdf

6= 0. Now we dimensionally

reduce the stable D-dimensional solution, and take the n → ∞ limit, in order to recover

the geometry and dilaton profile in the 6D supergravity model.

The dimensional reduction is performed as in the previous section. To allow a well-

defined n→ ∞ limit, we further make the change of coordinates ρ = r2+
n
2 , along with the

parameter redefinitions ρ− = r
2+ n

2

− , ǫ = 2 ǫD/n and λ = n2λd. Moreover, we define the

function h(ρ) as h(ρ) = limn→∞
n2ρ
4 hn(ρ):

h(ρ) = (λ− Λ)
ρ

4

[

1 − 1

ρ2

] [

1 − ρ2
−
ρ2

]

. (4.59)

Finally, the solution to the 6D supergravity can be written:

ds26 = ρ dz2 + ρ
( z

L

)2
(

−dt2 + δijdx
idxj

)

+
( z

L

)2
(

dρ2

h(ρ)
+ ǫ2h(ρ)dφ2

)

κσ = 4 ln
( z

L

)

+ 2 ln ρ Fρφ = −ǫ q
a

ρ3
Qa (4.60)

where, assuming λ < 0, we have defined z as in eq. (4.23), 4/L =
√
−λ and the quantization

condition takes the familiar form:

− g eaI

ǫ qa

2

(

1 − 1

ρ2
−

)

= NI , (4.61)
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where we recall the choice of coordinates such that ρ+ = 1. The parameters describing the

background, λ, ǫ and ρ−, are given as above in terms of qf , T±, using (4.48), (4.49), (4.50)

in the limit n→ ∞:

λ = Λ −
κ2q2f
2ρ2

−
(

1 − T+κ
2

4π

)2

=

(

ǫ

4

1

(ρ2
− − 1)

(

(1 − 2ρ2
− + ρ4

−)Λ − (ρ2
− − 1)2λ

)

)2

(

1 − T−κ2

4π

)2

=

(

ǫ

4

1

ρ2
−(ρ2

− − 1)

(

(−1 + 2ρ2
− − ρ4

−)Λ + (ρ2
− − 1)2λ

)

)2

. (4.62)

It is a simple exercise to invert these expressions. Then, the initial tuning of Λ gives:

Λ =
κ2q2i

2

(

1 − T+κ2

4π

)

(

1 − T−κ2

4π

) (4.63)

whereas the final solution parameters are:

λ = Λ −
κ2q2f

2

(

1 − T+κ2

4π

)

(

1 − T−κ2

4π

)

ǫ = ± 32π

κ2q2f

(

1 − T+κ2

4π

)2

(T+κ2 − T−κ2)

ρ− =

√

√

√

√

1 − T+κ2

4π

1 − T−κ2

4π

. (4.64)

In contrast to the unwarped case with or without branes, here we find a unique physical

solution with λ < 0 (for the monopole field strength to decay, the combination ǫ qa must

decrease, which, together with ǫ ∼ 1/q2, implies q2f > q2i ). Otherwise, the endpoint in

the presence of warping is a straightforward generalization to the one we found in the

previous sections, breaking the 4D maximal symmetry, and it is similarly the analogue of

the warped scaling solutions found in [8]. Although to establish the stability of this final

solution would now require a systematic analysis of its fluctuations, we argue that due to

flux conservation, the monopole has nowhere else to go.

Energy

Moreover, we now confirm that the energy of our proposed endpoint solution is less than

the zero energy of the initial unstable configuration. The total energy density can be

defined as in the unwarped case as a sum of 4D gradient and potential energies, (4.32), but

now including the warp factor when we integrate out the extra dimensions. Evaluating on

the background solution (4.60), we find, just as for the unwarped case, that the gradient
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energy is −1/2 of the potential energy, so that the total energy in the Einstein frame

(g
(E)
µν = (z/L)2gµν) is:

ETOT = −4πǫ

κ2

(

1 − ρ2
−
)

L2 z4
(4.65)

and indeed less than zero.

5 Conclusions

Compactifications supported by gauge field fluxes were long ago [6, 7] found to be generi-

cally unstable, due to tachyonic modes in the non-Abelian degrees of freedom, but the fate

that they meet has remained an open question. In this paper, we have explored a number

of possible candidates for the endpoint of this instability.

Topological flux conservation suggests that an unstable monopole field decays to the

unique, topologically connected, stable monopole [3–5], and we have determined how the

geometry responds to this decay in various scenarios. In the Einstein-Yang Mills theory,

with a cosmological constant, a Minkd × S2 lowers its potential energy by adjusting to

AdSd × S′
2. In 6D supergravity, the dilaton precludes such a simple dynamics, and we

have argued that it forces the breaking of the maximal symmetry in the non-compact

dimensions. By recasting the dilaton as the volume modulus of n fictitious dimensions in a

yet-higher dimensional non-dilatonic Einstein-Yang Mills theory [23], we were able to find

the corresponding solutions explicitly for both unwarped and warped initial configurations,

with and without brane sources. The non-trivial profile of the dilaton in 4D generates a

singular, static, Kasner-like geometry that is conformal to (unwarped or warped) Mink4 ×
S2, where the radius of the 2-sphere grows with the distance from the singularity. How

to interpret the naked timelike singularity to which the instability seems to lead is an

important open question; does it signal an inconsistency or does it suggest some new

physics beyond any supergravity approximation? One way to resolve the singularity is to

pass to the higher dimensional Einstein-Yang Mills theory in (6+n)D, in which case the

singularity results from projecting the smooth AdS4+n×S2 geometry onto six dimensions.

Such ideas have been discussed in [28]. Moreover, we have shown that the final configuration

is perturbatively stable, and that the decay results in a finite total energy which is lower

(counting gradient and potential contributions) than the initial one.

We would like to end with a comment. The instability suffered by Yang-Mills sectors

in the background of a monopole is the spherical analogue of the Nielsen-Olesen instability

that occurs in flat 4D Yang-Mills theory [32]. In that case, it was proposed that condensa-

tion of the tachyonic modes leads to the formation of magnetic flux tubes [33], in a rather

beautiful imitation of the vortex formation in superconductor physics [34]. That such a

dynamics might also be possible in the present case is certainly an interesting speculation.
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